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THERMOCAPILLARY FLOW NEAR A COLD WALL

D. Canright
Mathematics Dept.. Code MA/Ca
Naval Postgraduate School
Monterey, CA 93943

ABSTRACT

The following model problem examines the thermocapillary feedback mechanism im-
portant at the edge of weld pools and other materi- Is processes. A pool of liquid with a flat
horizontal free surface is bounded on one side by a vertical solid wall. which is maintained
at a cold temperature to unit depth. and at a warmer temperature below; far away the
fluid is at the warmer temperature. Surface tension is a decreasing function of tempera-
ture, so that the surface thermal gradient drives flow toward the corner. When convection
is vigorous. the flow compresses the thermal gradient which is driving the flow: this posi-
tive feedback results in small local length scales and high velocities near the corner. This
problem is examined through a detailed scaling analysis and through numerical <.mulation

for a range of parameters.
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THERMOCAPILLARY FLOW NEAR A COLD WALL

1. INTRODUCTION

In the processing of materials. often material is melted and resolidified. Several practi-
cal processes. ¢.g.. welding. float-zone purification. and Czochralski crystal growth. involve
a pool of molten metal with a free surface, with strong temperature gradients along the
surface. Convection in the molten metal is typically vigorous and siguificant to the results
of the process, in that it affects the size and shape of the pool. the heat transfer. the
mixing of solutes. and ultimately the microstructure of the finished product. The forces
driving the convection include the variation of surface tension with temperature along
the surface (thermocapillary forces), buoyancy forces due to thermal (and/or solutal) ex-
pansion, and electromagnctic forces in the case of arc welding or electron beam welding.
However, in many cases (c.g. laser welding) thermocapillary forces predominate. and even
in cases where other forces are stronger overall. there are still important regions where the
thermocapillary forces are dominant (i.c.. cold corner regions: see Chen. 1987).

Consequently. there have been many theoretical studies of thermocapillary flows. pri-
marily numerical. and a few analytical (reviews are given by Ostrach. 1982. and Davis.
1987). Cowley and Davis (1983) analyzed the (two-dimensional) thermocapillary flow near
a hot wall for vigorous flow (large Marangoni number): here the fluid flows up the wall
then turns and flows away along the free surface. so this would be called the hot corner
problem. The numerical studies of Zebib ct. al. (1985) of flow in a rectangular pool (2-D)
with one hot and one cold wall. however. show that for moderate to small Prandtl numbers
(e.g.. metals) the cold corner region has by far the strongest effect on both the flow and the
heat transfer. This result gives a different overall scaling than that of Cowley and Davis.
although their local hot-corner scaling was validated. Other numerical studies (e.g.. Zehr
et. al.. 1987). when a sufficiently fine mesh is used, show similar strong flow at the cold
corner. where the flow along the free surface toward the cold wall compresses the thermal
gradient. thereby enhancing the flow and the heat transfer. Great care is nccessary to
insure that the small length scales of this corner region are resolved numerically: this is
not always the case (as noted by Chen. 1987).

Therefore, it is imperative to develop a theoretical understanding of the dynamics
of the cold corner region. Being a region of intense heat transfer. the details of the flow
can affect the shape of the melt pool and the cooling rate, thus the microstructure. of
the material. At the least. the dependence of the length. velocity and thermal scales
on the parameters (Marangoni number. Prandtl number, Capillary number) needs to be
understood in order for realistic numerical models to be designed in a way to resolve the
details in this important region. But as yet. such understanding is lacking. In fact. in a
recent review, M. M. Chen (1987. p.552) states, “It would seem then that the structure of
the cold corner flow is one of the most critical issues to be studied in the future.”

To analyze the behavior of the cold corner region without all the complications of the
complex geometry, phase change. and time dependence inherent in real materials process-
ing applications. a simplificd model problem will be considered. much like that of Cowley
and Davis (1983). as follows. A pool of liquid has a horizontal frce surface ending at a
vertical wall, and the upper section of the wall is cooled: the resulting thermal gradient
drives thermocapillary flow towards the cold corner. The depth and width of the pool are
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assuuied large compared to all local length scales (which is reasonable for practical situa-
tions with high Marangoni numbers). so the pool appears semi-infinite both horizontally
and vertically.

This simplified problem is still complicated. and contains most of the features of the
cold corner regions in practical processcs. e.g.. welds. The missing features are phase
change and surface deflection. both of which could modify the geometry locally {curved
wall and surface). but are unlikely to change the basic structure and scaling.

The structure of the thermal and flow fields will be examined both through a detailed
scaling analysis to dctermine the dependence on the parameters. and through numerical
simulation using two different methods.

2. PROBLEM STATMENT

A pool of incompressible Newtonian fluid is bounded on the left by a vertical solid
wall. with the upper portion of the wall (to depth d) maintained at a cold temiperature 7.
while the rest of the wall is at thie hot ambient temperature Tj, of undisturbed fluid far from
the corner. (See figure 1.) Above the horizontal free surface of the liquid is an inviscid.
nonconducting gas. Surface tension is assumed strong enough to keep the free snrface flat
(smiall Capillary number). but with surface tension variations due to a lincar dependence
on temperature. The resulting flow is assumed to be two-dimensional and steady.

Then the equations governing the thermocapillary convection in the cold corner are
conservation of mass. momentuni. and energy:

T.u=0 (2.1)
pu-Vu=-NVp+Vu (2.2)
pcpu-VT =kVT (2.3)
with the boundary conditions:

at y=0: T,=0. v=0. puy=1T; (2.4a.b.c)

T.. y<d
at r=0: T= { ¢ y=e u=0v=010 (2.5a.b.c)

T. y>d
as z.y—ox: T —-T,. wuwuv—0 (2.6a.b.c)

Here u is the velocity vector with components u and v in the = (horizontally rightward)
and y (vertically downward) directions. p is pressure. T is temperature. p is density. yu is
viscosity. ¢, is specific heat. k is thermal conductivity. and 7 (assumed constant and neg-
ative) is the derivative of the surface tension with respect to temperature. The boundary
conditions specify that the wall is piecewise isothermal with no fluid slip. and the flat free
surface is thermally insulated, with thermocapillary forcing.

The equations can be nondimensionalized by scaling lengths by d. temperature dif-
ferences by AT = T), — T.. and velocities by u, = v AT /. The resulting dimensionless
equations are:

V-u=0 (2.7)
Ru-Vu=-Vp+Vu (2.8)
Mu.-VT=V?T (2.9)




with the boundary conditions:

at y=0: T,=0. v=0. u,=T, (2.10a.b.c)
-1. y<l1

at r=0: T= { v u=v=0 (2.11a.b.c)
0. y>1

as z.y—=>x: T—-0 uwuv—>0 (2.12a.b.c)

where u, etc. from here on denote the dimensionless quantitics. The two dimensionless
parameters are the Marangoni number M = u,d/x and the Reynolds number R = u,d/v.
where x = k/pc, is the thermal diffusivity and v = p/p is the kinematic viscosity. Their
ratio gives the Prandtl number: P = v/ = M/R.

For the numerical solutions below. it is convenient to eliminate the pressure by adopt-
ing a stream-function/vorticity formulation for the flow:

Ru-Vw=Vw (2.13)
w=-V-y (2.14)
u=V%¥, . v=-Y, (2.15a.b)

wlere ¥ is the stream function and w is the vorticity. with the flow boundary conditions

at y=0: ¥v=V¥,=0. w=-T; (2.1Ga.b.c)
at r=0: ¥Y=¥,=¥,=0 (2.17a.b.c)
2

as T, y—-x: VY.w-—0 (2.18a.b)

3. SCALING ANALYSIS AND REGIMES OF BEHAVIOR

The structure of the thermal and flow fields can take on different forms. depending on
the values of the two governing parameters. the Marangoni number A . which measures the
importance of thermal convection relative to thermal diffusion. and the Prandtl number
P. which is the ratio of viscous to thermal diffusion. a material property. (Equivalently.
one could use Reynolds number R = M/ P as the second parameter. the ratio of inertial to
viscous forces.) Here we derive the appropriate dimensionless scales for the four different
asymptotic regimes of behavior.

To examine the dominant balances in the cold corner, three scales suffice: the lori-
zontal length scale ! for the thermal gradient along the surface. the vertical viscous length
scale & for the velocity shear at the surface (which turns out to be the same scale as for
the velocity shear on the wall), and the velocity scale U for flow along the surface. The
vertical thermal length scale is determined by the boundary condition on the wall, and so
is O(1). The thermocapillary stress condition (2.10c) scales as:

>

1

so that U ~ 8/l. In the energy and vorticity equations (2.9 and 2.13). the terms for
convection in each direction scale the same, but not so for diffusion. and by (2.16). the

3




surface vorticity scale is 1/1. so (2.9) and (2.13) scale as:

v 1

MT ~ 7 +1 (3.2)
v 1 1

Ap~ptm A

For small enough M, thermal convection is negligible. implying / ~ 1. and the thermal
field is essentially conductive. decoupled from the flow. But for large enough M convection
becomes important. and the strong surface flow toward the wall compresses the thermal
gradient along the surface, which in turn strengthens the local driving force for the flow.
This reduces the horizontal thermal length scale ! to the point that thermal diffusion away
from the wall balances convection toward the wall. so the local ¢ffectioe Marangoni number
is order unity: M5y = MUl ~ 1. Then the externally imposed length scale (dimensional
d above) is no longer dircctly relevant to the compressed cold corner region. (In this case.
the local importance of inertia is better indicated by whether viscous or thermal diffusion
is more efficient. i.e.. by P rather than R.)

Similarly. for small enough R. inertia is negligible everywhere. implying ¢ ~ . and the
flow is dominated by viscous forces. For large enough R inertial forces become dominant
and viscous effects are confined to boundary layers of thickness 6 < ! along the surface and
the wall, where the local effective Reynolds number Regy = RUS*/l ~ 1. (Botlh layers are
of comparable thickness because the pressure ficld outside the layers has the same length
scale in both directions.) The above gives the scaling for each regime.

When the thermal field is conductive and the flow ficld dominated by viscous forces
(M <« 1and R« 1. or P> M), all three scales are of order unity: [ ~1. ¢~ 1. U ~ 1.
Thus in this case {only). the scaling used in the nondimensionalization is appropriate
everywhere. Within this regime. the solution is fully two-dimensional with no fine structure
and is nearly independent of the parameters.

For the conductive case with inertial flow. the additional resistance of inertia reduces
both the velocity scale and the viscous length scale: U ~ 6 ~ R—s (while 1 ~ 1 still).
This reduced velocity also reduces the effective Marangoni number. such that this regime
applies when M < Ri,or M < P~%, with R> 1, or P <« M. (Note that this gives
the same boundary layer scaling as Zcebib et al.. 1985, except they made an error on the
passive wall layers. as pointed out by Chen. 1987.) Here the vorticity generated by the
shear stresses on the surface and the wall are confined to the thin boundary layers.

When thermal convection is important but inertia is not (M > 1 and P’ > 1). surface
thermal varitions are compressed to a narrow region. beyond which the thermocapillary
forcing is small, so 6 ~ | ~ M~ and U ~ 1. However, the strong inward flow along
the surface turns downward and away from the no-slip wall (and weakens rapidly with
distance). such that no thermal boundary layer is formed on the wall: rather. vertical and
horizontal variations arc comparable.

The most important regime for materials processing is where thermal convection is
important and P < 1. the latter being generally true for metals. In this case. within the
compressed thermal region there are thin viscous boundary layers along the surface and
wall. Then I~ M~ 'P~ 3, §~M-' and U ~ Pi.i.c.. the additional resistance of inertia




decreases the velocity scale and thus increases the thermal scale by a factor of V17 relative
to the purcly viscous case. Again the reduced velocity changes the thermal convection
scaling. and large Marangoni number here means M > P-%.

The approximate divisions between the four asymptotic regimes are shown in figure
2. For a material of small P, as M is increased from zero. at first the temperature field is
conductive and the flow dominated by viscous forces. then the flow becomes primarily iner-
tial and viscous boundary layers form. and finally thermal convection becomes dominant,
shrinking all local length scales in the corner.

4. VISCOUS CORNER REGION

There is a region in the corner. for any M and P. where viscous stresses from the wall
limit the flow and both inertia and thermal convection are negligible. so the temperature
is a linear function along the surface. Locally the thermocapillary stress is constant. and
the flow is given by a similarity solution (Moffatt. 1964. although the published version ix
incorrect).

If the flat free surface makes an angle a with the solid wall. then a constant unit
surface shear stress toward the corner gives

2 [(sin 2a — 2a)(cos20 — 1) — (cos 2a — 1){sin 26 — 26)]

r
Y(r.f) = —
(r.0) 4 sin 2a — 2a cos 2¢

(4.1)

where 7 and 8 arc polar coordinates. with € increasing fromm the wall to the free surface
(sce figure 1). In the special case here. o = 7. and

U(r, )

r? B(l — cos26) + .i-(sin 20 — 29)] (4.2a)

s

1 1
u=r {[—sin?() + —(cos 26 — 1)} 7
2 s

1 .
- [5(1 —cos26) + l(sin 20 — 2{))] b’} (4.2h)
T
4
w=1-—6 (4.2¢)
7
4
p—po=—Inr (4.2d)
s

where 7 and § are unit vectors in the coordinate dircctions. and po 1s some reference
pressure. Figure 3 shows the streamlines for this similarity flow. The zero-vorticity contour
extends from the corner at a 45° angle. dividing the negative vorticity on the surface from
the positive vorticity on the wall.

This is the form of the flow in the cold corner on the smallest length scale. where
all the above flow quantities would be multiplied by T(0.0) (which scales as 1/1). The
velocity grows lincarly with distance r from the corner and the local length scale is 7. which
can be used to estimate the range over which the similarity solution is applicable. For the
two viscous-flow regimes mentioned above, the linear-temperature approximation requires
r < 1, so for the conductive regime r <« 1 while for the convective regime r <« M™1.
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For the two inertial-flow regimes, the more restrictive condition is that locally inertia is
negligible. and the local velocity scale is /1. so we must have 72 < I/R: in the conductive
regime this implies » < R~%. while in the convective regime the range is r < PiM~Y or
r/l < P3.

This gives an estimate of the resolution required for a numerical model to resolve all
the details of the cold corner flow. Because of the corner singularity in w and p. spectral
methods would be inappropriate: instead. finite-difference or finite-element methods could
be used. Then if the first grid point is in the similarity range. no details of the velocity field
in the corner will be lost. In addition, the similarity form may be useful as a "matching”
type boundary condition for the singularity at the origin.

5. GREEN'S FUNCTION METHOD FOR VISCOUS CASE: R — 0
When the Reynolds number is sufficiently small. inertia is negligible throughout the
flow field, and to lowest approximation the flow is governed by the biharmonic equation:

VI(VIO)=0 (5.1)

Then the flow everywhere depends only on the instantancous thermal gradient along the
surface (even if the flow is unstecady). This allows the flow ficld to be represented using
the Green's function for a point force near a rigid wall. directed toward the wall (sce. c.g..
Hasimoto & Sano. 1980. or Blake. 1971).

The Green's function for the stream function due to a unit (dimensionless) force in
the negative = direction applied on the surface at the point (£.0) is:

. _ 1 T4 2xryé - o,
G(r.y.§) = 5 [g In (7‘_) 2 } (9.2a)
where
Ty SV(@+ 2+ o =(z -2+ y? (5.2b)

The flow field duc to such a point force at £ = 1 is shown in figure 4. (Note that
all distances scale with £.) The far field (r > £) can be used as an approximation to the
viscous thermocapillary flow at large enough distances that the distributed forcing of the
thermal gradient can be replaced by a point force near the wall. It can be shown that in
the far-field the zero vorticity contour approaches an angle of % from the surface. As 7
increases, the velocity decays rapidly as u ~ O(r~2).

This rapid decay of velocity has the consequence that no thermal boundary layer
formns on the wall. While this result only applies dircctly when inertia is negligible. one
would expect that the same order of decay applies to the inertial case in the far field. by
analogy with the Squire-Landau jet (Landau, 1944. and Squire, 1951) where the velocity
due to an isolated point force decays like u ~ O{r~1) for all Reynolds numbers. Note also
that near the wall (except near the surface). the flow is away from the wall. Hence. though
the surface temperature gradient may be highly compressed from vigorous convection.
there is no thermal boundary layer along the wall. i.e., vertical and horizontal temperature
variations are expected to be of the same order. This is in marked contrast with the
seemingly comparable case of a hot corner. There the flow tends to expand the surface
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thermal gradient over loug distance. so the forcing is similar to a distributed lne force.
and thermal boundary layers form both on the wall and the surface (Cowley and Davis.
1983). This difference between concentrated forcing and distributed foreing changes the
fundamental character of the flow.

Using the Green's function. then the stream function. velocity components. and vor-
ticity in the viscous thclmo(..lplll.uy flow are given by:

1 [~ 2:
Viz.y)== [ T ]y 1n< ) ”"] dé (5.30)
- U
1 B 1 1 2. 2‘1/2 . _
u(z.y) = Py T (&) l <,—+) + y < 5 7—2—) - 7.25 (1 - —72—)] d¢ (5.3b)
“*Jo L + - + +
1 > T T — y& 2r(r + £
v(ir.y) = — T'(¢) (1/ <H:£ - I 5) - 2%{% (1 - —~(7—~+“)> d$ (5.3¢)
2w L T3 e (s T3
1 > [ 1 1 S+ 8y
w(r.y) = o T'(&) [2y <—2~ - —,_,—) - -Si(r—j‘—-gﬂj ds {5.3d)
<7 Jo L Y . ry

using the shortened notation T'(xr) = T, (x.0).

To calculate the steady flow for various values of Marangoni number (with R = 0). the
time-dependent equation for the temperature field was explicitly integrated in time until
the steady state was reached. A finite square domain on a uniform grid was used. where on
the artificial boundaries. diffusion across the boundaries is neglected and where convection
is inward the fluid outside is assumed to be at zero temperature. The effects of these
artificial boundaries on the cold corner are presumably small if the boundaries are several
units away. since the thermal field decays quickly with distance. Central finite differences
were used. with upwind differencing for the convective terins. The velocity at each point
was cvaluated from the above integrals (5.3b.c). using an analytic approximation around
the singularity at (z.0). and elsewhere using the trapezoidal 1ule with first-order differences
for the thermal gradicnt. as central differences here resulted in a numerical instability.

The results for a range of M are shown in figure 5. The transition from the primarily
conductive regime to the convective regime as M increases is apparent. As the surface
gradient becomes more compact. the strong downward convection away from the corner
extends the thermal region into a sort of broad diagonal plume: no thermal boundary layer
forms even for large M. (Where the isotherms intersect the artificial boundaries. slight
local distortion due to the artificial boundary conditions is apparent.) For large M. the
flow outside the cold corner is qualitatively similar to the flow from a point source (sce
figure 4).

6. NUMERICAL SOLUTIONS FOR FULL SYSTEM

When inertia is not negligible. the full coupled nonlinear equations must be solved.
Unlike the Green's function approach. this requires flow boundary conditions at the arti-
ficial boundaries of the computational domain: here these boundaries are assumed to be
impermeable and shear-free. as well as isothermal. These conditions constrain both the
thermal and flow fields (compared to the Green's function method). enhancing recircula-
tion and preventing long thermal plumes. Still, with the artificial boundaries several units
away. their effects on the cold corner are expected to be small.
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Again. the numerical method involves stepping the unsteady equations forward in timme
until steady state is reached. At each time step. the convection-diffusion equations for tem-
perature (2.9) and vorticity (2.13) are solved by the Alternating-Direction Implicit (ADI)
scheme. where the convective terms are evaluated by the Eulerian-Lagrangian Method
(ELM. see Cheng ct al.. 1984) using the velocity field from the old stream function and
upwind bilinear interpolation. (The ADI method avoids diffusive numerical instability. so
the time step is only limited by convective stability.) After several time steps. the Poisson
equation for the stream function (2.14) is solved by Gauss-Scidel iteration with Succes-
sive Over-Relaxation (SOR). Steady state is assumed when the pointwise RMS change in
stream function is below a certain tolerance.

A non-uniform Cartesian grid was employed. (The program allows arbitrary spacing
of points in each direction.) Using a three-point difference scheme. only first-order accuracy
18 possible for the second derivatives: the differencing employed becomes second-order in
the limit of uniform spacing. Specifically. the following one-dimensional difference formulac
were used (derived from Taylor series):

. —diry dey —da da_
;= dr_(dry +dr_) " + drydr_ * dry(dry 4+ dr_) I+
+ O(f"dryda_) (G.1a)
s 2 -2 2
;= dr_(dry + dx_) f-+ drydr_ f+ dry(dry +dr_) I+
+ O(f"(dry — dx_)) (G.1h)

where dr_ and drg are the distances to the grid points below and above the current point.
with f_ and fy the corresponding values of the function.

The grid spacing in each direction was chosen to have a closely packed region of
uniform spacing by the surface or wall. a widely spaced region of uniform spacing out near
the artificial boundarics. and in between a region of smoothly (exponentially) changing
spacing. This was generated by applying the following function to a uniformn grid (in &.
say):

Inr¢/D. 0<e<
T'T = F(6) = { (£ — &) 1€ lE=E0) D pa=6i-lnte ¢ < ¢ < g, (6.2)
‘HLar 1 —- ,’.ln T (l — /D‘ {2 S é S 1

where 7 is a parameter giving the ratio of outer to inner spacing. £ and & are paramecters
delineating the three regions. D = (r = 1)(& = &) + lnr(r + & — 16). and 7, is the
position of the artificial boundary.

It was found that. even when the time step easily satisfied convective stability require-
ments. nonctheless instabilities developed in the vorticity near the wall. Several different
formulations for the wall boundary condition on vorticity were tried. to no avail. However.
by under-relaxing the changes in wall vorticity only during the initial adjustment period.
the instability was eliminated. The formula used to calculate the vorticity at the wall
(without under-relaxation) from the stream function is

~
wo = 2—(32’——21) +O(9"xy) (6.3)
8




where subscripts 0, 1, and 2 refer to the wall and the first two grid points. While ouly
first-order, this formulation is independent of ¥y and thus avoids re-using the boundary
condition for V.

Results arce shown in figures 6 and 7 for P =1 and P = 0.01. for a variety of M. The
conductive, viscous regime is represented by the case M = 0.01. P = 1 (figure 6a). For
P = 1. with increasing M. the surface thermal gradient becomes compressed (similar to
the P = oc case computed by Green's functions) along with the vorticity on the surface.
However. inertia is no longer negligible. and so the flow down the wall has less of an
outward component. Also. the artificial boundaries modify the “plume.” keeping it from
the boundaries and turning it upward due to the recirculation. For P = 0.01 (as typical in
liquid metals). with increasing M incrtial effects confine the vorticity. forming clear viscous
boundary layers, before thermal convection becomes strong. Also. a counter-rotating cell
forms in the lower part of the domain. As thermal convection compresses the surface
gradient, the surface viscous boundary layer remains limited to the cold corner. Note that
for large M and small P, the thermal length scale is small compared to the overall domain.
and the viscous length scale is small compared to the thermal scale. imposing severe (local)
resolution requirements on any numerical model.

The numerical results for 7 =1 and P = 0.01 are compared with the scaling analysis
in figure 8. The thermal length scale (or rather 1/1) is estimated from the thermal gradient
T, at the wall (based on the first grid point along the surface). The velocity scale (U)
is estimated from the maximum velocity 4,4, at a grid point on the surface (though the
actual maximum might be expected to fall between grid points). The viscous length scale
(8) is approximated by the position 7,4, of the grid point with the maximum velocity.
For P = 1, the transition is apparent from the conductive viscous regime (where . U.
and § are nearly independent of M) to the convective viscous regime (where [ x M~! and
6§ x M1, with U roughly constant). For P = 0.01, two trausitions are scen. from the
conductive viscous regime to the conductive inertial regime (! nearly constant. U x Af~1/3.
and 6 x M~1/3), to the convective inertial regime (I x M~1. 8 x M~1. U nearly constant).

7. DISCUSSION AND CONCLUSIONS

The practical importance of thermocapillary convection in materials processing. along
with the complications inherent in typical processes (e.g. curved interfaces. phase change.
etc.), insure that numerical simulations will remain one of the main theoretical tools for
understanding such systems. This work predicts. a priort, the resolution requirements for
such numerical models to accurately represent the high heat transfer and rapid velocity
variations in the cold corner region.

The structure of the corner depends on two dimensionless paramecters indicating the
driving force for convection and relative importance of viscosity: the Marangoni number
M (based on the overall temperature difference, overall thermal length scale. and material
properties) and the Prandtl number P (a material property). Hence there are four asymp-
totic regimes (shown in figure 2) depending on whether thermal convection and inertial
forces are locally important. For large- P materials (c.g.. organics). the corner flow is dom-
inated by viscous forces, and for large M the surface thermal variations are compressed.
i.e.. the local length scale is decreased (and heat transfer increased). For small-P materi-
als (e.g.. metallics), inertia becomes important before thermal convection with increasing
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M. and thin viscous boundary layers form within the thermnal region. When M is large
(compared to P~1/2). three levels of length scales must be resolved (overall. thermal. and
viscous). a severe requirement on numerical models.

The scaling was derived from a simple problem designed to isolate the feedback mech-
anism of the cold corner. Numerical calculations by two methods for closely related prob-
lems (where the corner is necessarily less isolated due to the finite domain) illustrate the
changing structure of the cold corner and show the details of the transitions between the
asymptotic regimes. The numerical results are consistent with the scaling analysis.

Oune surprising result, in contrast with the hot corner problem of Cowley and Davis
(1983). is that no thermal boundary layers form. This differcuce is due to the foreing being
limited to a relatively concentrated region in the cold corner. while for the hot corner the
forcing is distributed over an extended region (the horizontal thermal variations being
extended by convection).

To compare with the numerical results of Zebib et al. (1985) for P = 1. note the
different boundary conditions: their domain had a (flat) free surface. a hot and a cold
no-slip wall. and an insulated no-slip bottom. Then even when the cold corner was highly
compressed. there were still significant thermal variations along most of the surface due to
the hot wall. so the overall scaling is similar to the conductive inertial case herc. And ap-
parently even their cold corner was modified by the external bulk flow. for their maximum
vorticity scaled as w x M?/3, whereas here w x M. (The resolution requirements derived
here can thus be considered conservative.) Hence one important question remaining is
under what conditions can the cold corner be considered locally determined (as it is here).

In real materials processes. the surface is free to deflect. and the position and shape of
the solid-liquid interface depends on the thermal field. These effects greatly complicate the
problem geometrically. yet the dominant dynamic balance should remain that considered
here. Future work will investigate these effects in the cold corner.
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FIGURE CAPTIONS

Figure 1. Problem Formulation: a liquid quarter-space is bounded above by a flat free
surface subject to thermocapillary forcing. and is bounded on the left by a rigid vertical
wall. at temperature T, to depth d and at the warmer temperature Tj, below. which ix also
the ambient temperature of the undisturbed fluid far away.

Figure 2. Asymptotic Regimes: the four different asymptotic behaviors correspond to
whether the thermal field is controlled primarily by convection or by conduction. and
whether the flow is dominated by viscous or inertial forces.

Figure 3. Viscous Corner Flow: strecamlines (solid. black) and vorticity contours (dashed.
light gray) for the sclf-similar solution valid where the surface temperature is approximately
linear and inertia is negligible.

Figure 4. Green's Function: streamlines (solid. black) and vorticity contours (dashed. light
gray) for the non-inertial flow due to a point force on the surface at (1.0). directed toward
the wall. The flow is recirculating and decays rapidly with distance.

Figure 5. Numerical Results for R — 0 (P — oc): velocity vectors and isotherms (solid.
dark gray) of numerical solutions using the Green's function formulation. for a range of
Marangoni numbers. On the artificial boundaries (bottom and right). normal thermal
diffusion is neglected and incoming fluid is assumed isothermal. (a) M = 10: (b) A = 30:
(c) M =100; (d) M = 300: (e¢) M = 1000.

Figure 6. Numerical Results for P = 1: isotherms (solid. dark gray). strecamlines (thin.
black) and vorticity contours (dashed. light gray). for the numerical solution of the full
coupled system. The artificial boundaries (bottom and right) arc assumed isothermal.
impenetrable. and shear-free. (a) Af = 0.01: (b) M = 10; (¢) M = 30: (d) M = 100: (¢)
M =300: (f) M = 1000: (g) detail of A = 1000.

Figure 7. Numerical Results for P = 0.01: sce previous caption. (a) M = 1: (b) M = 10:
(c) M = 100: (d) detail of M = 100: (e¢) M = 1000: (f) detail of A/ = 1000: (g) M =
10.000: (h) detail of M = 10.000.

Figure 8. Summary of Numerical Scales: wall temperature gradient T, (diamonds). maxi-
mum velocity up,q, (triangles). and position z,,4, of maximum velocity (stars). as functions
of Marangoni number M. from numerical solutions of full system. Lines of slope 1. -1. and
-1/3 are shown for comparison with scaling analysis. (a}) P = 1; (b) P = 0.01.
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